If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=3136
We move all terms to the left:
b^2-(3136)=0
a = 1; b = 0; c = -3136;
Δ = b2-4ac
Δ = 02-4·1·(-3136)
Δ = 12544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12544}=112$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-112}{2*1}=\frac{-112}{2} =-56 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+112}{2*1}=\frac{112}{2} =56 $
| 5a+14=3(a+2)= | | 72=-8s | | 5a+14=3(a+2= | | 3c+5=62 | | 6w+-4=50 | | b^2=1521 | | 8(q-81)=64 | | 5xx17=265 | | 3(x+7)2-2=2 | | w+(-4)=-4 | | z+2=3(3) | | b^2=5184 | | 200=0.20x+70 | | 5z-1=44 | | -19-3n+5=45n-3-7 | | 20+2n=-56 | | 3(6x+2=5(x-3) | | 4+z=2+17 | | 48=6+6z | | 2z-12=4 | | 4x+4x+10=50 | | 8+z=22 | | 14+r=-2 | | 14+ | | 4(x+)-10+x=5x+62 | | 2(x)-15=27-4(x) | | b^2=1089 | | 2x=9x+55 | | 540=((5x+2)+(5x+10)+(3x+5)+(8x+8)+(4x+15)) | | 7x-+6=43 | | 9=7x | | 1000=80x+35 |